Viewmaker Networks: Learning Views for Unsupervised Representation Learning

Mai 3, 2021

Sprecher:innen

Über

Many recent methods for unsupervised representation learning involve training models to be invariant to different "views," or augmented versions of an input. However, designing these views requires considerable human expertise and experimentation, hindering widespread adoption of unsupervised representation learning methods across domains and modalities. To address this, we propose viewmaker networks: generative models which learn to produce input-dependent views for contrastive learning. We train these networks jointly with the main network to produce adversarial $\ell_p$ perturbations for an input, which yields challenging yet faithful views without extensive human tuning. Our learned views enable comparable transfer accuracy to the the well-studied SimCLR augmentations when applied on CIFAR-10, while significantly outperforming baseline augmentations in speech (+9% absolute) and IMU sensor (+17% absolute) domains. We also show how viewmaker views can be combined with SimCLR views to improve robustness to common image corruptions. Our method provides a roadmap for reducing the amount of expertise and effort needed for unsupervised learning, potentially extending its benefits to a much wider set of domains.

Organisator

Kategorien

Über ICLR 2021

The International Conference on Learning Representations (ICLR) is the premier gathering of professionals dedicated to the advancement of the branch of artificial intelligence called representation learning, but generally referred to as deep learning. ICLR is globally renowned for presenting and publishing cutting-edge research on all aspects of deep learning used in the fields of artificial intelligence, statistics and data science, as well as important application areas such as machine vision, computational biology, speech recognition, text understanding, gaming, and robotics.

Präsentation speichern

Soll diese Präsentation für 1000 Jahre gespeichert werden?

Wie speichern wir Präsentationen?

Ewigspeicher-Fortschrittswert: 0 = 0.0%

Freigeben

Empfohlene Videos

Präsentationen, deren Thema, Kategorie oder Sprecher:in ähnlich sind